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Abstract
We show that the Korringa ratio, associated with nuclear magnetic resonance in metals, is unity
if vertex corrections to the dynamic spin susceptibility are negligible, the hyperfine coupling is
momentum independent, and there exists an energy scale below which the density of states is
constant. In the absence of vertex corrections we also find a Korringa behaviour for T1, the
nuclear spin relaxation rate, i.e., 1/T1 ∝ T , and a temperature independent Knight shift. These
results are independent of the form and magnitude of the self-energy (so far as is consistent with
neglecting vertex corrections) and of the dimensionality of the system.

Nuclear magnetic resonance (NMR) spectroscopy is a
powerful experimental probe of the spin dynamics of strongly
correlated electron materials. An important quantity in NMR
experiments on metals is the Korringa ratio [1, 2], K, which is
proportional to the ratio of the nuclear relaxation rate 1/T1 to
the square of the Knight shift, Ks. The Korringa ratio, and the
temperature dependence of 1/T1 and Ks can provide important
insights into the electronic and magnetic correlations. In this
paper we show that, under certain conditions, the Korringa
ratio does not deviate from its non-interacting value, even in
strongly correlated electron systems.

In the diagrammatic formalism of quantum many-body
theory, the effects of electronic correlations are described by
the self-energy and the vertex corrections. The self-energy
describes the effect that interactions with virtual particles have
on the propagation of particles through the material. Vertex
corrections describe the renormalization of coupling constants
due to interactions (the name arises because coupling constants
appear at the vertices in Feynman diagrams) [3].

An important consideration in the study of vertex
corrections is Migdal’s theorem, which states that the vertex
corrections due to the electron–phonon interaction are of
order

√
m/M , where m is the electron mass and M is the

nuclear mass. The Eliashberg theory of superconductivity,
which improves on BCS theory by replacing the BCS effective
pairwise interaction with an explicit treatment of the electron–
phonon interaction, invokes Migdal’s theorem in order to
neglect vertex corrections. There is no Migdal’s theorem
for either the electron–electron interaction or the electron–

magnon interaction3. Therefore, understanding the importance
of vertex corrections in strongly correlated superconductors
is of great importance and has been widely debated. Hertz
et al [4] have shown that the first order vertex correction due
to paramagnons is the same order of magnitude as the bare
vertex. More recently, in the context of the cuprates, arguments
have been presented both for [5–7] and against [8–10] the
thesis that vertex corrections are negligible. Some theories
of strongly correlated superconductors have attempted to deal
with the vertex corrections. For example, for the one band
Hubbard model, the FLEX approximation [11] consists of a
self-consistent summation of bubble and ladder diagrams; the
latter are the lowest order self-consistent contributions to the
vertex function.

The relaxation of the nuclei is governed by their coupling
to their environment, which, in a metal, is the conduction
electrons [1, 2]. Hence, many of the properties measured in
NMR experiments depend on the transverse dynamic magnetic
susceptibility of the electron fluid, χ−+(q, iωn). In the

3 Some care needs to be taken when discussing the role off vertex corrections
in effective low-energy Hamiltonians. It is important to make clear which
Hamiltonian one is considering, as the vertex corrections in the original
Hamiltonian may be integrated out of the effective Hamiltonian. For example,
when studying the spin-fluctuation theory of superconductivity [12] one starts
from a Hubbard model and integrates out the high energy degrees of freedom,
including those responsible for magnetism, so as be left with an effective
Hamiltonian containing both spins and fermions. Thus in the effective
Hamiltonian m±(q, τ ) is not given by equations (2) as it depends on the spins
as well as the fermions. Thus, in this paper, when we use the term ‘vertex
corrections’ we are referring to models for which equations (2) hold, unless
we specify otherwise.
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Matsubara formalism, this is given by [13]

χ−+(q, iωn) =
∫ β

0
dτeiωnτ 〈Tτ m−(q, τ )m+(−q, 0)〉, (1)

where β = 1/kBT is the inverse temperature, τ is the
imaginary time, ωn are the Matsubara frequencies,

m−(q, τ ) = h̄γe√
2

∑
p

c†
p+q,↓(τ )cp,↑(τ ), (2a)

m+(q, τ ) = h̄γe√
2

∑
p

c†
p+q,↑(τ )cp,↓(τ ), (2b)

are the ∓ components of magnetization, and Tτ is the
(imaginary) time ordering operator.

The Korringa ratio [1, 2] is the dimensionless quantity

K ≡ h̄

4πkB

(
γe

γN

)2 1

T1T K 2
s

, (3)

where γN (γe) is the nuclear (electronic) gyromagnetic ratio.
The Korringa ratio is unity in a non-interacting system with
a contact, i.e. momentum independent, hyperfine coupling.
The hyperfine coupling is momentum independent if there
is one atom per unit cell, and this is an approximation
otherwise [2]. Further, Korringa showed that in such a system
1/T1T and Ks are independent of temperature [2]. These
three behaviours are often collectively referred to as Korringa
behaviour. However, real materials always exhibit some
correlations and the Korringa ratio may deviate from unity,
or 1/T1T or Ks may be temperature dependent [14–16]. In
elemental metals the Korringa ratio is typically between 0.6
and 1 (see [1, pp 156–7]). Further, the Korringa ratio is greater
(less) than unity if the system is near an antiferromagnetic
(ferromagnetic) instability [17]. There are large deviations
from Korringa behaviour in a wide range of strongly correlated
electron materials including the cuprates [18], organic charge
transfer salts [19, 20], and the heavy fermion materials [21].
On the other hand, many materials and model Hamiltonians do
show Korringa behaviour; including some strongly correlated
ones, such as magnetic impurities described by the Anderson
model [22]. Therefore it is important to determine what
conditions may be sufficient for Korringa behaviour in a
correlated system.

The relaxation rate and the Knight shift can be written in
terms of the dynamic spin susceptibility,

1

T1T
= lim

ω→0

2kB

γ 2
e h̄4

∑
q

|A(q)|2 χ ′′−+(q, ω)

ω
, (4a)

Ks = |A(0)|χ ′−+(0, 0)

γeγNh̄2
, (4b)

where A(q) is the hyperfine coupling between the nuclear and
electron spins, and χ ′(q, ω) [χ ′′(q, ω)] is the real (imaginary)
part of the dynamic susceptibility.

The focus of this paper is on how electronic correlations
affect the Korringa ratio. Specifically, we investigate
how vertex corrections modify the Korringa ratio and what

implications this has for strongly correlated materials. We
show that as zero temperature is approached the Korringa
ratio approaches unity if three conditions are satisfied: (i)
vertex corrections are negligible, (ii) the hyperfine coupling
is momentum independent, and (iii) there exits a energy scale
below which the density of states is constant. This result
holds independent of the strength of the electron–electron
interactions that enter the self-energy and of the dimensionality
of the system. We also find that, under the same conditions,
1/T1T and Ks are independent of temperature. Hence, non-
Korringa behaviour must result from vertex corrections, a
momentum dependent hyperfine coupling and/or the absence
of an energy scale below which the density of states is constant.

Upon substituting (2) into (1), performing the appropriate
Wick contractions on the operators, and Fourier transforming
into frequency space one finds that

χ−+(q, iωn) = (5)

= h̄2γ 2
e

2β

∑
p,ipm

�(p + q, ipm; p, ipm + iωn)

× G(p + q, ipm)G(p, ipm + iωn), (6)

where �(q, iωn; p, iω′
n) (shaded area) is the three-point vertex

function and G(p, ipn) (solid lines) is the full interacting
Green’s function given, in the spectral representation, by

G(p, ipn) =
∫ ∞

−∞
dE1

2π

As(p, E1)

ipn − E1
, (7)

where As(p, E1) is the spectral function, given by

As(p, E) = −2 Im 	(p, E)

(E − εp − Re	(p, E))2 + (Im 	(p, E))2
, (8)

εp is the dispersion of the non-interacting system, and
	(p, ipn) is the self-energy. Therefore

χ−+(q, iωn) = h̄2γ 2
e

2β

∑
p,m

∫ ∞

−∞
dE1

2π

dE2

2π

× �(p + q, ipm; p, ipm + iωn)

× As(p + q, E1)As(p, E2)

(ipm − E1)(ipm + iωn − E2)
. (9)

At this stage we neglect vertex corrections, that is
we set �(q, iωn; p, ipn) = 1 for all p, q, pn, and ωn .
After performing the Matsubara summation and the analytical
continuation iωn → ω + iη, one finds that

χ−+(q, ω) = h̄2γ 2
e

2

∑
p

∫ ∞

−∞
dE1

2π

dE2

2π
As(p + q, E1)

× As(p, E2)
nF(E1) − nF(E2)

h̄ω + E1 − E2 + iη
, (10)

where nF(E) is the Fermi function.
Using the well known equality 1/(x + iη) = P(1/x) −

iπδ(x), where P(y) denotes the principal value, one finds

lim
ω→0

χ ′′−+(q, ω)

h̄ω
= h̄2γ 2

e

2

∑
p

∫ ∞

−∞
dE

4π
As(p + q, E)

× As(p, E)

(
−∂nF

∂ E

)
. (11)
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It then follows from equation (4a) that

1

T1T
= kB|A|2

h̄

∫ ∞

−∞
dE

4π
ρ̃2(E)

(
−∂nF

∂ E

)
, (12)

where ρ̃(E) = ∑
p As(p, E) is the full interacting density of

states per spin species and we have assumed a contact hyperfine
coupling, A(q) = A for all q. We now specialize to the case
where their exists an energy scale, kBT0 below which ρ̃(E)

is independent of energy. There several situations in which T0

may not exist or may be too small to be of practical interest, for
example, if the Fermi energy is at, or very close to, a van Hove
singularity or if there is a (pseudo)gap at the Fermi energy. For
T  T0, TF, where TF is the Fermi temperature, equation (12)
simplifies to

1

T1T
� kB|A|2ρ̃2(EF)

4π h̄
. (13)

Note that the right-hand side, and therefore 1/T1T , is
independent of temperature.

For H → 0, where H is a static magnetic field,
χ ′−+(0, 0) = χ ′

zz(0, 0) = ∂M/∂ H |H=0, where χ ′
zz(q, ω) is

the real part of the longitudinal component of the dynamic spin
susceptibility and the magnetization, M is given by [23]

M = h̄γe

2

∑
k

(〈n̂k↑〉 − 〈n̂k↓〉), (14)

where n̂kσ is the usual number operator. Writing n̂kσ in the
spectral representation and performing the sum over k one
finds that

M = h̄γe

2

∑
σ

σ

∫ ∞

−∞
dE

2π
ρ̃σ (k, E)nFσ (E), (15)

where we take σ = ±1, ρ̃σ (E) = ∑
k Asσ (k, E) is the

density of states of spin σ electrons and Asσ (k, E) is the
spectral function for spin σ electrons. Even for small magnetic
fields the Fermi surface may, in general, be distorted [23] as
Ekσ = Ek −σ H�(k, Ekσ ; k, Ekσ )h̄γe/2 +O(H 2). However,
in the absence of vertex corrections such complications cannot
arise as the k-dependence drops out of the above equation.
Therefore we deal with the magnetic field by introducing a spin
dependent chemical potential: μσ = μ − σ H h̄γe/2 + O(H 2)

and noting that nFσ = {1 + exp β[(E − μσ)]}−1. Thus one
finds that,

lim
T →0

M = h̄γe

2

∑
kσ

σ

∫ ∞

−∞
dE

2π

[
ρ̃σ (E)�(E − μσ )

+ σ
h̄γe

2
ρ̃σ (E)δ(E − μσ)H

+ ∂ρ̃σ (E)

∂ H
�(E − μσ ) + O(H 2)

]
. (16)

In the limit H → 0 the first term vanishes due to spin
symmetry and the third term vanishes from the assumption
that we are at an energy scale on which the density of states

is constant. Thus, the Knight shift is

Ks � |A|γeρ̃(EF)

4πγN
, (17)

which is independent of temperature.
It follows immediately from equations (13) and (17), that

K = 1 for interacting electrons with a contact hyperfine
coupling when T  T0, TF and neglecting vertex corrections.
We stress two points about this result: firstly, our result
includes the special case of Korringa’s result for the free
electron gas, Kfree = 1; secondly, and more importantly, the
Korringa ratio is unity for a broad class of systems and not just
for the free electron gas.

Thus we have shown that any deviation of the Korringa
ratio from unity, or temperature dependence of 1/T1T or Ks

must be caused by either vertex corrections, the wavevector
dependence of the hyperfine coupling, or the fact the there
is no energy, kBT0, on which we may treat the density of
states as constant. Note that this result is independent of the
dimensionality of the system. Further, this is true for any form
of the self-energy. However, it should be noted that the self-
energy and the vertex function are not really independent: they
both arise from the same underlying interactions and can often
be related by Ward identities. So this last statement should be
taken with appropriate caution.

Let us now briefly discuss the role of vertex corrections
in strongly correlated systems. A simple and a widely studied
approach to nearly (anti)ferromagnetic metals is the random
phase approximation (RPA). For the Hubbard model the RPA
gives [13],

χRPA(q, ω) =

= + + + · · ·

= χ0(q, ω)

1 − Uχ0(q, ω)
, (18)

where U (dashed lines) is the effective Coulomb interaction
between electrons on the same lattice site, χ0 is the dynamic
susceptibility in the absence of vertex corrections, and we
have suppressed momentum labels in the diagrams for clarity.
The distinctive ‘Stoner-like’ form of equation (18) arises
from the sum of ladder diagrams, i.e., vertex corrections.
For this form of χ(q, ω) and a three-dimensional parabolic
band the Korringa ratio is always less than unity and
decreases monotonically towards zero as the Stoner instability
is approached [15]. However, for a two-dimensional parabolic
band the free electron spin susceptibility is momentum
independent. Consequently, cf equations (4), the Korringa ratio
remains unity for all U even though 1/T1 and the Knight shift
both diverge as the Stoner instability is approached [24].

Korringa type relations have been derived for the impurity
spin susceptibility, χimp(ω), of the Anderson single impurity

3
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model. It is found that [22, 25]

lim
ω→0

χ ′′
imp(ω)

ω
= 2πχ ′

imp(0)2

γ 2
e

, (19)

which is sometimes referred to as the Shiba relation. The Shiba
relation has indeed been observed experimentally in Kondo
systems [27]. This relation holds even though there can be
significant vertex corrections for the spin susceptibility. This
and the case of the two-dimensional RPA with a parabolic band
illustrate that the absence of vertex corrections is sufficient but
not necessary for the Korringa ratio to be unity.

A similar form of χ(q, ω) to that given in (18) is found in
dynamical mean field theory (DMFT), but with U replaced by
a self-consistently determined four-point vertex function [27].
In DMFT, as in the RPA, this functional form results from a
sum over ladder diagrams, with the four-point vertex function
now forming the legs of the ladders. DMFT for the Hubbard
model is equivalent to an Anderson single impurity model
which is solved self-consistently [27]. It follows that the
local spin susceptibility χloc(ω) = ∑

q χ(q, ω) must satisfy
the Shiba relation (19) with χimp(ω) = χloc(ω). Since, in
general, χloc(ω) �= χ(q = 0, ω) the Korringa relation does
not necessarily hold in DMFT (see equation (73) in [27]).

A slave-boson large N treatment of the periodic Anderson
model shows that in the low-temperature heavy fermion phase
the Korringa ratio is close to unity, even though 1/T1T and
Ks can be several orders of magnitude larger than the value
predicted in the absence of strong electronic correlations [28].

In the singlet superconducting states the opening of the
gap causes a suppression of both 1/T1T and Ks. For
a fully gapped superconductor both 1/T1T and Ks show
activated behaviours, while if the order parameter has nodes
power laws are seen at low T [29]. The behaviour,
particularly of the Knight shift, is more complicated in a triplet
superconductor [29]. In the same way, a (pseudo)gap destroys
the energy scale T0 and hence causes non-Korringa behaviour
by suppressing1/T1T and Ks.

Given the above discussion it is interesting to consider
the normal states of a few superconductors which display
non-Korringa behaviour. A strong temperature dependence
and a Korringa ratio significantly larger than unity is
observed in the organic charge transfer salts [19, 20],
e.g., in κ-(ET)2Cu[N(CN)2]Br [30, 31]. Heavy fermion
compounds [32] and cobaltates [33] also show enhanced
Korringa ratios above their Kondo temperatures. Most
recently non-Korringa behaviour has been observed in the
iron pnictides [34]. In the cuprates, the Korringa ratio of
YBa2Cu3O6.64 [35, 36] has a strong temperature dependence
and is larger than unity. However, in the cuprates the hyperfine
coupling has a significant wavevector dependence [37, 38].
This complicates deducing the relative importance of vertex
corrections. We also note that vertex corrections are required
in the superconducting state in order to preserve Gauge
invariance [39].

Moriya’s self-consistent renormalized theory [14] and the
phenomenological MMP theory [18] give a good description of
many features of the cuprates [18, 21, 40], organics [20], and
heavy fermion materials [21]. These theories posit a form of

χ(q, ω) which follows from the form of equation (18). Hence,
these theories implicitly include vertex corrections.

In summary, we have shown that for a system with a
contact hyperfine coupling the Korringa ratio is unity in the
absence of vertex corrections provided there is an energy scale
on which the density of states may be treated as constant. At
sufficiently low temperatures 1/T1T and the Knight shift are
both independent of temperature under the same assumptions.
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